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Abstract 
Background and Objective: Maize is an important crop in Ethiopia because of its adaptation to wider agro-ecologies and higher yield potential. However, 
most varieties were not parameterized regularly, and not included in the database of Decision Support System for Agro-technology Transfer (DSSAT), due 

to which simulation of growth and yield of the varieties was not possible under changing climate. Hence this experiment was conducted to determine the 

genetic coefficients of maize cultivars adapted to the southern central rift valley of Ethiopia and to simulate the growth and yield of maize under various 

rainfed production environments using the DSSAT model. 

Materials and Methods: The DSSATv4.8 was calibrated using genotypic, edaphic and historic weather parameters. Later, the model was tested for its 

performance through a validation procedure using the second set of independent data. The performance of five maize varieties grown across Shamana, 
Bilate, Hawassa and Dilla areas were simulated. The output of the model was statistically analyzed to evaluate the impact of climate change on maize 

production. 

Results: The varieties BH-540, BH-546, BH-547, Shala and Shone produced yields of 5658, 5381, 5149, 6859 and 7358 kg/ha with the percentage errors of 
-0.1, -0.8, -1.0, -6.1 and 2.6%, respectively. This shows good agreement within the statistical significance limit (P<0.05) between observed and simulated 

yields. Simulation experiment produced 7620.8 kg/ha at Shamana for Shala variety, and 5383.9, 9206.3 and 5973.6 kg/ha at Bilate, Hawassa and Dilla, 

respectively for Shone variety.

Conclusion: It can be inferred that the DSSAT version 4.8 can be successfully employed for simulating the growth and yield of maize hybrids including 

climate change impact analysis in the southern central rift valley of Ethiopia. 

Keywords: Calibration, DSSAT Model, Maize, Simulation and validation 

MAJOR ACHIEVEMENTS 

➢ Simulation study among varieties confirmed that BH-

540, BH-546, BH-547, Shala and Shone with yields

ranging between 3.6-7.6, 3.6-7.1, 2.2-8.1, 4.1-7.6 and

5.4-9.2 t ha-1, respectively

➢ Simulation study across Shamana, Bilate, Hawassa and

Dilla locations showed yield range of 2.2-7.6, 3.7-5.3,

7.1-9.2 and 3.3-5.9 t ha-1, respectively

➢ Shala variety required more thermal time from seedling

emergence to the end of the juvenile phase compared to

other maize varieties considered in the study.

➢ BH-540 variety had the highest maximum possible

number of kernels per plant.

The error percentage was least for grain yield parameter, 

intermediate for days to maturity and largest for days to 

anthesis. 

INTRODUCTION 

Assessment of crop yield response to climate risks is 

commonly carried out using either machine learning, 

regression, or process-based tools [1]. Since recently 

process-based models are being used to simulate crop 

development and production by integrating genotypic, 

environmental, and management information [2] into a 

comprehensive expression. The same is used to evaluate the 

impact of climate on crop production as a result of increased 

greenhouse gases [3], and to generate adaptation responses 

for sustained agricultural production [4]. One of the 

contemporary support tools is DSSAT; a set of independent  
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programs that operate simultaneously in simulation models 

using soil, climate, crop, and agronomic management 

databases [5,6]. In Ethiopia, improved technology and 

decision support tools (DSTSs) have been in use over the 

last couple of decades in the interest of improving 

agricultural productivity under varying climate scenarios [7-

11]. However, the progress in using crop models has been 

slow for use in agronomic studies and accurate simulation of 

crop production for different agro-ecological conditions due 

to the complexity of the relevant biophysical processes, 

associated sources of uncertainty [8], and the scarcity of 

relevant datasets [1]. 

To direct the use of crop-climate modeling research, 

broadening the knowledge base in site-specific calibration 

and validation of processes, including the determination of 

crop cultivar-specific genetic coefficients for evaluating crop 

models has invaluable significance in the DSSAT model 

[12]. These genetic parameters are sets of values that enable 

crop models to simulate the performance of diverse 

genotypes under varying soil, weather and management 

conditions more precisely. Estimation of the coefficients is 

the most intricate aspect of modeling exercise simply due to 

the requirements of expensive and time-consuming field 

experiments [13]. However, it is demanding to establish the 

Genotype Specific Parameters (GSPs) before applying the 

cropping system model to obtain credibility and the ability in 

simulating crop growth and yield. There exist endeavors that 

resulted in cultivar coefficients for some maize varieties in 

Ethiopia [7,9,11]. However, cultivars parameters were not 

determined for other maize varieties grown particularly in 

the southern central rift valley. Hence, there is a strong call 

for the calibration of the DSSAT maize model through 

cultivar coefficients, while there is also a need for new 

cultivars to be updated or parameterized regularly in the crop 

models [14]. Since the accurate estimation of crop cultivar 

coefficients is the entry point for use of dynamic crop model, 

identification of knowledge gaps and improvement of our 

wisdom over crops and biophysical aspects helps for 

narrowing the breach, enhancing decision making, and 

subsequent augmentation of agricultural productivity. 

Calibrated crop models with cultivar parameters can be used 

to optimize crop management, evaluate the impacts of 

climate change, to develop options that optimize resource 

use [2-4]. 

Using the GSPs, which provide the genotype component of 

G×E×M interactions, estimation of multi-year and multi-

location data from breeder evaluation experiments across 

varied agro-climatic conditions as possible [5,6,13]. In 

practice, the cultivar coefficients carry genetic, phenological, 

and physiological information of a particular crop variety; 

thus, allowing simulations on a daily step or in some cases, 

at an hourly time step depending on the process and the crop 

model. At the end of each day and with the progressing 

growing season, the plant and soil water, nitrogen, 

phosphorus, and carbon balances are updated, as well as the 

crop’s vegetative and reproductive development stages are 

restructured [12]. Subsequently, the DSSAT model 

simulates growth, development, and yield as a function of 

GSPs, weather and soil conditions, and crop management 

choices. The genetic inputs are PHINT (thermal time 

between the appearance of leaf tips), G3 (kernel filling rate), 

G2 (potential kernel growth rate), P1 (Thermal time from 

seedling emergence to the end of the juvenile phase), P2 

(measures development about photoperiod), P5 (measures 

the thermal time from silking to physiological maturity) 

[5,6]. It is recognized that soil water remains the most 

important variable affecting the development rate during 

germination, and temperature becomes the primary variable 

influencing growth and development after germination [15]. 

Moreover, shoots have a higher priority than roots for 

assimilation as long as the nutrient and water supply from 

the soil is sufficient during vegetative growth. Conversely, 

roots will have higher priority, if water or nutrient is 

deficient. The grains are the main sink for assimilation 

during the grain-filling period. Materials for filling the 

grains can be from current photosynthesis or stored 

assimilate. If crop growth conditions with unlimited water 

and nutrients exist, then the growth rate is determined only 

by the weather. Thus, the CERES (Crop Environmental 

Resource Synthesis) model, which is a component of the 

Decision Support System for Agro-Technological Transfer 

(DSSAT), offers an opportunity to explore the potential of 

new varieties and crop management practices in different 

environments (soil, climate, and management) before their 

release through analysis of growth duration, growth rate, and 

the extent to which stresses influence these processes [15]. 

As a result, a user can simulate crop growth, development, 

and yield for different maize varieties by making only minor 

changes to the input files that are cultivar-specific [16]. 

Keeping these imperatives in view, the present study was 

undertaken to determine the genetic coefficients of maize 

cultivars adapted to the southern central rift valley of 

Ethiopia and to simulate the growth and yield of maize 

under various rainfed production environments using the 

DSSAT model. 

MATERIALS AND METHODS 

The study area 

This study was carried out in southern plains of Central Rift 

Valley of Ethiopia, located between 6.38 latitudes in Dilla 

area (South) to 7.72 latitudes in Bulbula area (North). The 

Western margin corresponds with 37.75 longitudes (Wolita 

sodo) to 38.68 latitudes in Woteraresa (East). This covers an 

area of 1,021,332 ha (Figure 1). 
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Figure 1. The four clusters in the study area. 

DSSAT (CERES-Maize) Model 

DSSAT was developed by an international network of 

scientists, cooperating in the International Benchmark Sites 

Network for Agrotechnology Transfer Project. DSSAT 

version 4.8 was used in this study. The DSSAT simulate 

crop growth, development and yield using a defined data set 

on crop management, minimum weather data and soil profile 

parameters. Some of the crop management data required to 

calibrate DSSAT model takes account of crop, cultivar, 

planting date, row and plant spacing, fertilizer-N levels, 

tillage practices and organic amendments [5,6]. Also, data 

includes inputs on physiological stages of crop growth such 

as flowering dates and days to maturity. Minimum weather 

data sets consist of maximum and minimum temperatures, 

solar radiation and rainfall. Soil profile parameters comprise 

depth of soil, soil physical and chemical characters. The crop 

management data were recorded throughout the growing 

seasons. The input files, such as weather file, soil file, 

experimental file and A & T files (average measured data 

file, annual as well as temporal), were prepared to calibrate 

and validate the Crop Environment Resource Synthesis 

(CERES)-Maize model. All these input files are integrated 

into CERES-Maize system, a limited part of a reality that 

contains interacting elements [17]. 

CERES-Maize model is a simplified component of DSSAT 

system that is predictive and deterministic model designed to 

simulate maize growth, soil, water and temperature and soil 

nitrogen dynamics at a field scale for one growing season. 

The CERES-Maize model in DSSAT requires a set of six 

cultivar specific parameter for its calibration (Table 1). Four 

of them (P1, P2, P5, and PHINT) control the timing of 

phenological stages, and the remaining two (G2 and G3) 

characterize the potential yield under optimal conditions. By 

running Generalized Likelihood Uncertainty Estimation 

(GLUE), iteration and simultaneous carrying out sensitivity 

analyses, the coefficients for the tested cultivars were 

computed for use in the process of calibration. 

Determination of genetic coefficients 

The DSSAT crop model calibration requires genetic 

coefficients, which are specific for each cultivar to properly 

describe the processes related to growth, development and 

grain production under different soil, weather and 

management conditions. The cultivar coefficients for BH-

540 and BH-546 were adopted from works of Mohammed 

[7], Kassie [11] and Liben [9], respectively as shown in 

Table 2. However, the genetic coefficients for BH-547, 

Shala (P2859W) and Shone (PHB30G19) were not 

previously introduced within DSSAT due to which the 

genetic file (MZCER048.CUL) of DSSAT-CSM was 

created. Initial values of the genetic coefficients were 

obtained from the medium maturity group cultivar BH-546, 

already available in the DSSAT to modify and use for BH-

547. As Shala and Shone varieties are pioneer hybrids, the

file for medium maturing pioneers (e.g. PIO-3183) was

selected and used by modifying it for the new varieties. The

computed crop specific parameters (CSPs) for BH-547,

Shala and Shone varieties were copied into MZCER048

CUL file to operate the simulation. An iterative approach

was used to obtain reasonable genetic coefficients through

trial and error adjustments until there was a match between

the observed and simulated dates of anthesis and

physiological maturity and grain yield [21]. The derived

genetic coefficients were used for model performance

evaluation of maize varieties.
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Table 1. Texture, physical and chemical properties of the experimental soil. 

Depth (m) SAT UL FC DUL PWP LL 
Bulk density 

(g/cm-3) 
Texture % clay % silt % sand 

Bilate 

0-38 0.39 0.34 0.25 1.25 20 28 52 

38-78 0.39 0.32 0.26 1.36 20 24 56 

78-102 0.40 0.32 0.26 1.37 20 24 56 

102-171 0.40 0.31 0.27 1.26 22 22 56 

171+ 0.40 0.29 0.28 1.43 20 14 66 

Dilla 

0-38 0.41 0.28 0.13 1.2 51 21 28 

38-78 0.38 0.25 0.15 1.32 29 41 30 

78-102 0.38 0.26 0.19 1.34 47 33 20 

102-171 0.39 0.27 0.20 1.42 35 29 36 

Hawassa 

0-25 0.52 0.26 0.11 1.36 22 38 40 

26-69 0.52 0.24 0.09 1.36 24 36 40 

70-115 0.43 0.22 0.07 1.55 26 30 44 

116-131 0.40 0.20 0.05 1.57 32 34 34 

132-157 0.36 0.18 0.03 1.63 10 40 50 

158-187 0.31 0.16 0.02 1.58 10 54 36 

Shamana 

0-15 0.54 0.42 0.19 1.29 51 43 6 

15-30 0.57 0.40 0.17 1.34 39 53 6 

30-60 0.59 0.39 0.17 1.33 35 59 6 

60-90 0.53 0.33 0.15 1.33 41 53 6 

Source: Jemal [10], Demis and Beyene [18], Wendemeneh [19], Ayalew [20] 

Table 2. Maize cultivar (genetic) coefficients of maize cultivars for running DSSAT. 

Coefficient Unit Definition 
Maize varieties 

BH; 540 BH; 546 BH; 547 Shala Shone 

P1 °C day 
Thermal time from seedling emergence to the end of the 

juvenile phase 
245 253 260 250 320 

P2 Days 

Extent to which development is delayed for each hour 

increase in photoperiod above the longest photoperiod at 
which development proceeds at a maximum rate 

0.60 0.7 0.8 1.42 0.52 

P5 °C day Thermal time from silking to physiological maturity 850 945 950 942 962 

G2 Number Maximum possible number of kernels per plant 780 490 440 484 470 

G3 Mgday-1 
Kernel filling rate during the linear grain filling stage under 

optimum conditions 
8.5 12.7 14.8 14.6 10.0 

PHINT °C day 
Phyllochron interval, the interval in thermal time between 

successive leaf tip appearances 
48 49 54.4 48.4 74.91 

Soil characterization 

The soil data were collected and stored in the soil input file. 

The soil texture, bulk density, soil moisture, pH, organic 

matter, total N, field capacity, wilting point, and saturated 

moisture content were captured for each cluster following 

Table 1. The top soils of the experimental sites were 
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specified as clay loam, sandy, sandy loam and silty clay in 

Shamana, Bilate, Hawassa and Dilla clusters, respectively. 

Weather Information 

Daily weather data of the growing seasons, including 

precipitation (mm), minimum and maximum air 

temperatures (°C), and sunshine hours were collected from 

different sources including the Ethiopian Meteorology 

Institute (EMI) Hawassa Branch office and Hawassa 

Agricultural Research Center (HARC). In the absence of 

meteorological stations data, Climate Hazards Group Infra-

Red Precipitation with Stations (CHIRPS) satellite rainfall 

data (https://data.chc.ucsb.edu/products/CHIRP S-2.0/) were 

used [22,23]. Solar radiation (MJ m−o d−o) was derived from 

daily sunshine hours by using Weatherman of DSSAT. The 

weather files were created by using WEATHERMAN 

module of DSSAT for running of the model. 

Model Calibration 

The model was calibrated using field measured values of 

weather parameters, crop management and soil properties 

during 2014-2015 cropping season. Genetic coefficients 

were estimated by using observed days to flowering, days to 

physiological maturity and grain yield of maize cultivars 

growing in 2013-2017 as reported in Mekasha [24] and Sorsa 

[25]. Comparisons between measured and predicted maize 

yield and its attributes were carried out using RMSE, d-

statistic and R2 as shown in equation 1, 2 and 3 [26]. 

RMSE =
√∑[Yi−Xi] 2

n
Equation 1 

where Yi and Xi are the simulated and observed values 

respectively and n is the number of observations. Small 

values of RMSE considered as indicators for good 

performance of the DSSAT model. The second criterion was 

the determination of index of agreement or d-statistic [27]. It 

is used to measure the degree of the model prediction error, 

and the following Eq. 2 was used: 

d = 1 −  
∑[Yi−Xi] 2

∑[!Yi−Xm!+!Xi+Ym!] 2
Equation 2 

where Yi, and Ym are simulated and mean of the simulated 

yield respectively. Similarly, Xi and Xm are observed yield 

and mean of observed yield, and n is the number of 

observations. The d values range between 0 (no agreement) 

and 1 (perfect fit). Small values of d are considered as good 

performance of the DSSAT model [28]. The third criterion 

was determining the correlation coefficient (r) value. It is 

used to evaluate the linear relationship between the observed 

and modeled amounts with a value of 1.0. Thus, r tests the 

‘‘goodness of fit’’ of the linear model, r = 1 indicates a 

perfect fit of the model and r = 0 indicates that there is no 

linear relation. 

R2 =  
(∑ (Xi− Xmean)(YI− Ymean)  

 ) 2

(∑ (Xi− Xmean) 2 ∑    (YI− Ymean)  
 ) 2

Equation 3 

where n is the sample number, Xmean and Ymean are the 

observed mean and simulated mean values, respectively. Xi 

and Yi are the observed and predicted values of the ith 

observation (i = 1 to n), respectively. For RMSE, values 

closer to zero imply a good fit between observed and 

simulated yields. A value of zero for RMSE means that the 

model predicts the observations with perfect accuracy. The 

coefficient of determination, R2, values range between 0 and 

1, with 0 indicating “no fit” and 1 indicating “perfect fit” 

between the simulated and observed values, with higher 

values indicating less error variance. The RMSE values 

closer to 0 indicate better agreement between the simulated 

and observed values. 

Model Validation 

Model performance was evaluated by comparing the 

simulated versus observed values from the experimental data 

of 2016-2018 as reported in Bejigo [29], Loha and Hidoto 

[30] and Hidoto [31]. The comparison of observed and

simulated data on anthesis date, physiological maturity date

and grain yield was carried out by analyzing the results from

Equations 1, 2 and 3, mentioned above.

Simulation experiment 

Past and present CERES-Maize calibration and validation 

for major cultivars for Ethiopian production environment 

opens the way for use of the DSSAT model for inputs and 

resource management, yield forecasting and climate change 

impact analysis. Performance of five maize varieties (BH-

540, BH-546, BH-547, Shala and Shone) commonly grown 

across four locations (Shamana, Bilate, Hawassa and Dilla) 

was simulated using the cultivar parameters of each 

genotype, edaphic conditions and historic weather for each 

location. For this experiment, commonly known dates of 

planting (18th January for Shamana, May 1st for Bilate, April 

20th for Hawassa and March 20th for Dilla), nitrogen 

application (92 kg N for Shamana, 46 kg N for Bilate, 92 kg 

N for Hawassa and 69 kg N for Dilla), conventional tillage 

method and population (5.33 plants m2) were used. The 

simulation experiment was run under water and nitrogen 

limiting conditions for rain-fed farming using 380 vpm CO2 

emission (as default value) with thirty years (1991-2020) 

historic weather run across thirty years serving as 

replications. 

Statistical Analyses for simulation experiment 

The outputs of DSSAT model for dates of anthesis and 

maturity, and grain yield at harvest were statistically 

analyzed using the analysis of variance (ANOVA) technique 

to evaluate the impact of climate change on maize 

production. Accordingly, the five varieties were evaluated 

across four locations for each GHGs emission scenario 

during baseline, early, mid- and late century. The year effect, 

which has 30 levels, was used as replications (blocks) as in 

the DSSAT software because the maize yield in one year 

under a given treatment was not affected by another year. 
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Since each simulation year had unpredictable weather 

conditions, formal randomization of simulation years was 

not needed [32]. The ANOVA was calculated using the SAS 

software package and treatments averages were separated 

using least significance difference (LSD) at 5% level of 

probability wherever difference between averages exist. 

RESULTS AND DISCUSSION 

Genetic Coefficients 

The genetic coefficients, as obtained through running GLUE 

as part of calibration exercise, were shown in Table 2. The 

genotypic coefficient P1 was 245, 253, 260, 250 and 320°C 

day for BH-540, BH-546, BH-547, Shala and Shone 

varieties of maize, respectively, while the P2 was 0.60,0.7, 

0.8, 1.42 and 0.52 days for the same maize varieties. Thus, 

Shala variety required more thermal time from seedling 

emergence to the end of the juvenile phase compared to 

other maize varieties considered in the study. The genetic 

coefficient P5 was 850, 945, 950, 942 and 962°C day for 

BH-540, BH-546, BH-547, Shala and Shone maize varieties, 

respectively. G2 was 780, 490, 440, 484 and 470 whereas 

PHINT was 48, 49, 54.4, 48.4 and 74.1 forBH-540, BH-546, 

BH-547, Shala and Shone varieties of maize, respectively. 

There was considerable variation among the cultivars in G2 

and G3 but PHINT were the same amongst the cultivars. 

Thus, variety BH-540 has the highest maximum possible 

number of kernels per plant but showed up with low 

productivity mainly because of lowest kernel filling rate 

during the linear grain filling stage under optimum 

conditions, compared to other varieties. PHINT is critical in 

determining the duration of vegetative growth in maize, 

which is lower in temperate but higher in tropical climate. 

The difference in genetic coefficients justifies variation in 

the rate of development and accumulation of dry matter [33], 

and could be attributed to the differentiation in vernalization 

characteristics, photoperiod response, duration of grain 

filling, phillochron interval, and number of grains per ear, 

spike number umber of grains per ear and spike number

umber of grains per ear, spike number umber of grains per 

ear and spike number of each variety [33]. 

The highest PHINT values (74.91°C) observed in Shone 

variety were indicator of largest interval in thermal time 

between successive leaf tips, which gives maximum 

potential to fix growth and yield components during 

development of vegetative infrastructure due to slow leaf 

emergence. The adopted and generated cultivar specific 

parameters were within the range of DSSAT cultivar 

database. So, we can use the generated genetic coefficient in 

model application for southern central rift valley of Ethiopia. 

Phenology and grain yield at harvest during calibrations 

During calibrations, days to flowering for BH-540, BH-546, 

BH-547, Shala and Shone were 87, 82, 83, 78 and 82 with 

error percentage of 5.7, 8.5, 13.3, 7.7 and 4.9%, respectively 

(Table 3). The days to maturity averaged across study sites 

were 136, 138, 155, 144 and 154 with error percentage of 

2.2, 2.9, 5.2, 6.9 and 2.6, respectively. The obtained grain 

yields were 5658, 5381, 5149, 6859 and 7358 kg ha-1 with 

error percentage of -0.1, -0.8, -1.0, -6.1 and 2.6 for BH-540, 

BH-546, BH-547, Shala and Shone, respectively. Thus, the 

error percentage was least for grain yield parameter, 

intermediate for days to maturity and largest for days to 

anthesis. There was slight underestimation of grain yield for 

BH-540, BH-546, BH-547 and Shala by the model as shown 

with negative error percentages and there was slight 

overestimation of grain yield for Shone variety (Table 3). 

However, the performance of the model after its calibration 

was satisfactory and the results were within significant limits 

and in conformity to the results of Mohammed [7], Feleke 

[8], Kassie [11] and Liben [9]. The under estimation of grain 

yield found in this study was in line with findings of many 

authors including López-Cedrón [34], who indicated that the 

DSSAT model underestimated the maize yield partially 

because that the simulated water extraction was earlier than 

field experiment under water deficit condition. 

Phenology and grain yield at harvest during model 

validations 

During validations, days to anthesis for BH-540, BH-546, 

BH-547, Shala and Shone were 81, 75, 72, 72 and 78 with 

error percentage of 1.2, 7.4, 11.1, 7.7 and 4.9%, respectively 

(Table 4). The days of maturity averaged across study sites 

were 143, 134, 143, 142 and 144 with error percentage of 

7.0, 6.0, -2.8, 5.6 and -4.2, respectively. The obtained final 

grain yield was 5556, 5310, 5872, 7474 and 7358 kg ha-1 

with error percentage of -6.0, -8.8, -2.9, -11.0 and 2.6 for 

BH-540, BH-546, BH-547, Shala and Shone, respectively. 

Thus, the error percentage was least for grain yield 

parameter, intermediate for days to maturity and largest for 

days to anthesis. 

Days to flowering 

The validation results showed that days to anthesis were 82, 

81, 82, 78 and 81 for BH-540, BH-546, BH-547, Shala and 

Shone varieties with the goodness of fit (R2) values of 0.82, 

0.92, 0.90, 0.95 and 0.95, respectively between observed and 

simulated estimates. 

Days to maturity 

The goodness of fit (R2) between observed and simulated 

data was 0.96, 0.94, 0.88, 0.92 and 0.89 showing error 

percentage of 7.0, 6.0, -2.8, 5.6 and -4.2 for varieties BH-

540, BH-546, BH-547, Shala and Shone, respectively (Table 

4). In fact, the model has over estimated days to maturity in 

BH-540, BH-546 and Shala varieties, and underestimated in 

BH-547 and Shone varieties. The overestimation has also 

been reported by Feleke [8] for late-maturing varieties at 

Ambo using the DSSAT CERES-maize model. 

Grain yield at harvest 
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The regression line for grain yield was more or less near to 

1:1 line, indicating that the model was performing well 

under the test environment for BH-547 and BH-540 maize 

varieties. Thus, most data falling close to a 1:1 line between 

simulated and observed data (Figure 2), which indicated 

only a few days of error. However, for varieties Shone, 

Shala and BH-546, the model underestimated grain yield as 

grain yield values were below the 1:1 line. The goodness of 

fit (R2) as well as regression coefficients between observed 

and simulated data was also significant. 

Table 3. Observed and simulated values for days to anthesis, days to maturity and grain yield at harvest during model calibration. 

Traits BH-540 BH-546 BH-547 Shala Shone 

HWAMS 

Observed (kg/ha) 5666 5422 5200 7277 7168 

Simulated (kg/ha) 5658 5381 5149 6859 7358 

Error % -0.1 -0.8 -1.0 -6.1 2.6 

R2 1 0.98 1 1 1 

RMSE 73.6 236.9 239.7 256.3 235.6 

d-Stat. 1 0.98 0.79 0.84 0.69 

ADAT 

Observed (days) 82 75 72 72 78 

Simulated (days) 87 82 83 78 82 

Error % 5.7 8.5 13.3 7.7 4.9 

R2 0.94 0.92 0.87 0.96 0.86 

RMSE 7.07 6.52 12.5 16.49 11.07 

d-Stat. 0.9 0.75 0.8 0.82 0.81 

MDAT 

Observed (days) 133 134 147 134 150 

Simulated (days) 136 138 155 144 154 

Error % 2.2 2.9 5.2 6.9 2.6 

R2 0.89 0.87 0.98 0.87 1 

RMSE 7.07 97.9 70.3 256.3 93.1 

d-Stat. 0.78 0.65 0.92 0.74 0.81 

ADAT: Days to Anthesis; MDAT: Days to Maturity; HWAMS: Grain Yield 

Table 4. Validation of simulated and observed values for five maize varieties for days to anthesis, days to maturity and grain yield. 

Traits BH-540 BH-546 BH-547 Shala Shone 

HWAMS 

Observed (kg/ha) 5889 5779 6044 8294 7168 

Simulated (kg/ha) 5556 5310 5872 7474 7358 

Error % -6.0 -8.8 -2.9 -11.0 2.6 

R2 0.88 0.93 1 0.97 0.94 

RMSE 2002.2 236.9 239.7 256.3 235.6 

d-Stat. 0.82 0.99 0.495 0.64 0.89 

ADATS 

Observed (days) 81 75 72 72 78 

Simulated (days) 82 81 81 78 82 

Error % 1.2 7.4 11.1 7.7 4.9 

R2 0.82 0.92 0.90 0.95 0.95 

RMSE 2.19 6.52 12.5 16.49 11.1 

d-Stat. 0.71 0.85 0.64 0.72 0.81 

MDATS 

Observed (days) 133 126 147 134 150 

Simulated (days) 143 134 143 142 144 

Error % 7.0 6.0 -2.8 5.6 -4.2 

R2 0.89 0.94 0.88 0.92 0.96 

RMSE 73.55 97.9 70.3 92.8 93.1 

d-Stat. 0.88 0.75 0.72 0.82 0.93 

ADAT: Days to Anthesis; MDAT: Days to Maturity; HWAMS: Grain Yield 
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Figure 2. Relationship between simulated and observed maximum grain yield at physiological maturity. 

The results of d-statistic also depicted better agreement of 

the model for BH-540, BH-546 and Shone but less 

agreement with BH-547 and Shala. The coefficient of 

prediction was 0.77, 0.72, 0.95, 0.95 and 0.76% for BH-540, 

BH-546, BH-547, Shala and Shone varieties of maize in case 

of trend run between the observed and simulated values. The 

underestimation of grain yield and harvest index, and 

overestimation of kernel mass, grain N and total N uptake by 

DSSAT model was also reported by other scholars who 

attributed it to a very warm period during grain filling [35]. 

The DSSAT model seems to indicate a better grain filling 

rate when the temperature difference between maximal and 

minimal is minimized [36]. In fact, underestimation of 

predicted grain yield by 0·095 is considered a good 

assessment because a deviation of up to 0.20 of simulated 

yield from measured yield is considered good [37]. 

Comparison of calibration and validation results 

The yield difference between calibrated and validated grain 

yield at maturity is 1.8, 1.3, 14, 8.9 and 4% due to BH-540, 

BH-546, BH-547, Shala and Shone, respectively. The 

closeness of simulated and measured grain yields in both 

calibration and evaluation experiments can be as a result of 

accurate estimation of maximum grains number per plant 

and kernel growth rate under optimum conditions as 

suggested by Adnan [38]. Dates of maturity ranged between 

3 and 10 days in the calibration and between 0- and 10-days 

during validation testing. The prediction of anthesis showed 

a range of 4-11 days in calibration and 1 to 9 in validation. 

Thus, each variable during validations matched up very well 

with its counterpart in the calibrations. Some authors 

suggested acceptance of DSSAT model under conditions of 

multiple environments if difference between calibrated and 

validated yield from DSSAT model is less than 10% [39], 

which agrees with the current findings. Abedinpour and 

Sarangi [40] also reported underestimation of simulated 

yield compared to observed yield with figures as low as 18% 

under rainfed conditions, and attributed it to complexity of 

biomass and grain yield leading to difficulty in representing 

field dynamics. 

Mean squares of flowering date, maturity date and harvest 

yield at maturity 

The results of ANOVA showed that the main effect of 

location and variety were highly significant (P<0.001) on 

flowering date, days to maturity and harvest yield (Table 5). 

The location by variety two-way interaction was also highly 

significant (P<0.001) on anthesis date and yield at maturity. 

However, variety by location two-way interaction was not 

significant (P<0.05) on maturity date. 

Table 5. Mean squares of ADPS, MDAPS and HWAMS. 

Source DF ADAPS MDAPS HWAMS 

Rep 29 226.1ns 2236.3 ns 11130000 ns 

Location 3 8943.5*** 18754.8*** 809600000*** 

Variety 4 12068.1*** 32618.5*** 83340000*** 

Location*Variety 12 70.1*** 567.9ns 5539329*** 

Error 551 5.2 433.4 730132 

Total 599 

CV 2.81 12.91 18.01 

ADAT: Days to Anthesis; MDAT: Days to Maturity; HWAMS: Grain Yield; ***: Denotes presence of very high significant difference whereas ns: Refers to 

absence of significant difference at 0.05% level of probability 
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Mean separation of days to flowering, days to maturity, and 

harvest yield at maturity 

In Shamana cluster, variety Shala (7620.8 kg/ha) produced 

significantly (P<0.05) higher yield compared to varieties 

BH-540, BH-546 and BH-547 (Table 6). However, there 

was no statistical yield difference between yield values of 

variety Shala (7620.8 kg/ha) and Shone (7010.1 kg/ha). The 

higher grain yield could be due to the longer the growth 

duration period and higher growth rate compared to other 

varieties. In Shamana, BH-547 produced statistically lower 

maize yields (2177.8 kg/ha). In Bilate cluster, variety Shone 

produced significantly higher yield (5383.9 kg/ha) compared 

to other varieties. In Hawassa cluster, variety Shone was 

statistically superior (9206.3 kg/ha) compared to other 

varieties. The lowest yield in Shamana cluster was measured 

due to BH-546 (7096.2 kg/ha). In Dilla cluster, variety 

Shone produced 5973.6 kg/ha, which is significantly higher 

than other varieties tested in this experiment. The lowest 

yield in Dilla cluster was measured due to BH-540 (3596.6 

kg/ha). Across all clusters, shone variety showed 

significantly (P<0.05) longer anthesis date compared to 

other varieties. Contrarily, variety BH-547 showed 

significantly (P<0.05) lower anthesis dates across clusters. 
Table 6. Means of simulated harvest yield at maturity and anthesis dates. 

Variety 
Location 

Shamana Bilate Hawassa Dilla 

HWAMS (kg/ha) 

BH-540 3942.2E 3935.2E 7613.8BC 3596.6E 

BH-546 3618.2EF 3764.0E 7096.2C 4094.4E 

BH-547 2177.8G 4360.6E 8148.1B 3355.6F 

Shala 7620.8BC 4144.4E 7620.8B 4069.1E 

Shone 7010.1C 5383.9D 9206.3A 5973.6D 

LSD0.05 768.54* 

ADATS (days) 

BH-540 81.1FG 69.7JK 83.3F 70.2IJ 

BH-546 80.2G 66.7L 82.2G 71.5KL 

BH-547 77.2E 62.6I 80.2D 74.90H 

Shala 82.6F 69.1K 82.6F 70.9IJK 

Shone 84.7B 71.8DE 89.0A 83.6C 

LSD0.05 2.13* 

ADATS, MDATS and HWAMS represent simulated days to anthesis, days to maturity and grain yield 

Cumulative frequency distribution (CFD) of grain yield 

across clusters 

As the most efficient way to understand the data and the 

derivatives, CFD is plotted on the vertical axis and the range 

of data goes across the bottom (Figure 3). Results indicated 

that higher mean harvested yield of BH-540, BH-546, BH-

547, Shala and Shone was measured in Hawassa compared 

to other clusters. This could be due to favorable climate for 

maize crop compared to other clusters. Conversely, lower 

mean harvested yield was measured in Dilla regardless of 

the varieties tested. The 75% cumulative probability of 

maximum average maize grain yield is 6000, 5000, 6000, 

6000 and 8000 kg/ha in Shamana due to BH-540, BH-546, 

BH-547, Shala and Shone varieties, respectively. Moreover, 

the 75% cumulative probability of maximum average maize 

grain yield is 9000, 8000, 9000, 9000 and 10000 kg/ha in 

Hawassa due to BH-540, BH-546, BH-547, Shala and 

Shone, respectively. In Dilla cluster, the probability of non-

exceedance of grain yield is linear and the model simulation 

hardly results over 3000 kg/ha regardless of varieties used. 

This could be due to higher humidity and lower sunshine 

arising from the traditional agroforestry system of the area, 

which significantly reduces crop evapotranspiration [41]. 

SUMMARY AND CONCLUSION 

Maize (Zea mays L.) is the second most widely cultivated 

crop and the first in production within Ethiopia. Hence, it is 

necessary to understand the performance of commonly 

grown maize varieties in different production environments 

using historic climate data. The DSSAT version 4.8 was 

calibrated and validated for southern central rift valley 

environment using field experimental data. The performance 

of the model was evaluated through phenology and grain 

yield. The simulated results were in close agreement with 

the observed values and these were within the statistical 

significance limit. Grain yield, to some extent, was under 

predicted by the simulation but within significant limit. 

Simulated and observed dates to flowering was over 

predicted but within acceptable limit. Results of simulation 

experiment considering varieties Shala, Shone, BH-540, BH-

546 and BH-547 across Shamana, Bilate, Hawassa and Dilla 

areas, and using thirty years of historic weather data with 

recommended management of each location, showed higher 

yield for Shala variety at Shamana area (7620.8 kg/ha) 

whereas higher yields were recorded at Bilate (5383.9 

kg/ha), Hawassa (9206.3 k/ha) and Dilla (5973.6 kg/ha) 

from Shone variety. It can be inferred that the DSSAT 

version 4.8 can be successfully employed for simulating the 

phenology, growth and yield of maize hybrids grown under 

various production environments, including evaluating 

climate change impact and designing adaptation strategies 

under present and future climatic conditions of the southern 

central rift valley of Ethiopia. 
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Figure 3. Probability of non-exceedance of harvested maize yield. 
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